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MOTIVATION BEHIND REAL-TIME OPERATING SYSTEMS 
Embedded Computing Applications exist in a spectacular range of size and complexity 

for areas such as home automation to cell phones, automobiles, and industrial 

controllers. Most of these applications demand such functionality, performance, and 

reliability from the software that simple and direct assembly language programming of 

the processors is clearly ruled out. Moreover, as a distinguishing feature from general 

purpose computing, a large part of the computation is “real-time” or time constrained 

and also reactive or “external event-driven” since such systems generally interface 

strongly with the external environment through a variety of devices. Thus, an operating 

system is generally used. An operating system facilitates the development of an 

application program by making available a number of services, which, otherwise would 

have to be coded by the application program. The application programs “interface” with 

the hardware through the operating system services and functions. It is therefore 

important to understand the basic features of such operating systems, and this is what 

we will do in the coming sections. 

REAL-TIME OPERATING SYSTEMS 
WHAT ARE OPERATING SYSTEMS? 
An Operating System is a collection of programs that provide an interface between 

application programs and the computer system (hardware). Its primary function is to 

provide application programmers with an abstraction of the system resources, such as 

memory, input-output, and processor, which enhances the convenience, efficiency, and 

correctness of their use. These programs or functions within the OS provide various 

kinds of services to the application programs. The application programs, in turn, call 

these programs to avail of such services. Thus the application programs can view the 

computer resources as abstract entities, (for example, a block of memory can be used as 

a named sequential file with the abstract Open, Close, Read, Write operations) without 

need for knowing the low level hardware details (such as the addresses of the memory 

blocks). 

REAL-TIME OPERATING SYSTEMS 
A Real-Time OS (RTOS) is an OS with special features that make it suitable for building 

real-time computing applications also referred to as Real-Time Systems (RTS). Real-time 

operating systems (RTOSs) provide basic support for scheduling, resource management, 

synchronization, communication, and I/O like general purpose OSs (GPOSs) but also have 
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additional features for precise timing. RTOSs have evolved from being completely 

predictable and support safety-critical applications to those which support soft real-time 

applications. Soft and hard 

applications are dealt with later. 

Researchers have developed new 

paradigms and ideas that enhance 

the GPOSs to be more efficient and 

predictable. The current RTOS 

market includes many proprietary 

kernels for embedded systems like 

Atmega, composition-based kernels, 

real-time versions of popular OSs 

like Linux (Linux RT) and Windows 

NT (Windows CE).  

RTOSs are mainly developed for 

real-time systems (RTS). In an RTS, 

the correctness not only depends on 

the correctness of the logical result 

but also the result delivery time. An RTS is expected to respond in a timely, predictable 

way to unpredictable external stimuli. 

COMPONENTS OF AN RTOS KERNEL 
 

The most common element at 

the heart of all RTOSs is the 

kernel. Most RTOS kernels 

contain the following 

components: 

● The Scheduler is 

contained within each kernel 

and follows a set of algorithms 

that determine which task 

executes when. Some common 

examples of scheduling 

algorithms include round-robin 

and preemptive scheduling. 

● Objects are special kernel constructs that help developers create applications for 

real-time embedded systems. Common kernel objects include tasks, semaphores, 

and message queues. 
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● Services are operations that the kernel performs on an object or, general 

operations such as timing, interrupt handling, and resource management. 

The components that are listed here will be explained in further detail in the coming 

sections. 

HARD vs SOFT RTOSs 

Hard real-time system 

This type of system can never miss its deadline. Missing the deadline may have 

disastrous consequences. The usefulness of result produced by a hard real-time system 

decreases abruptly and may become negative if tardiness increases. (Tardiness means 

how late a real-time system completes its task with respect to its deadline.)  

Example: Flight controller systems. 

Soft real-time system 

This type of system can miss its deadline occasionally with some acceptably low 

probability. Missing the deadline have no disastrous consequences. The usefulness of 

result produced by a soft real-time system decreases gradually with increase in 

tardiness.  

Example: Telephone switches. 

In general, the smaller and more deterministic kernels provide support for hard systems. 

Here all the inputs and system details are known and careful design and analysis result 

in meeting hard deadline requirements. The larger and more stochastic kernels provide 

support for soft RTSs. Here the Quality of Service (QoS) guarantees is defined and shown 

to be met in a probabilistic sense. 
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INSIDE AN RTOS KERNEL 
THE SCHEDULER 
The scheduler is at the heart of every kernel. It provides the algorithms needed to 

determine which task executes when. To understand how exactly scheduling works, we 

need to look at the following things. 

Schedulable Entities 

A schedulable entity is a kernel object that can compete for execution time on a system, 

based on a predefined scheduling algorithm. Tasks and processes are all examples of 

schedulable entities found in most kernels. 

A task is an independent thread of execution that contains a sequence of independently 

schedulable instructions. Most kernels provide another type of a schedulable object 

called a process. Processes are similar to tasks in that they can independently compete 

for CPU execution time. Processes differ from tasks in that they provide better memory 

protection features, at the expense of performance and memory overhead. Note that 

message queues and semaphores are not schedulable entities. These items are inter-task 

communication objects used for synchronization and communication. 

Multitasking 

Multitasking is the ability of the operating system to handle multiple activities ​within set 

deadlines ​(this is the most important point of an RTOS). A real-time kernel might have 

multiple tasks that it has to schedule to run. 

In this scenario, the kernel multitasks in such a way that many threads of execution 

appear to be running concurrently; however, the kernel is actually interleaving 

executions sequentially, based on a preset scheduling algorithm. The scheduler must 

ensure that the appropriate task runs at the right time (again the most important feature 

of an RTOS). 

An important point to note here is that the tasks follow the kernel’s scheduling 

algorithm, while interrupt service routines (ISR) are triggered to run because of 

hardware interrupts and their established priorities. 

As the number of tasks to schedule increases, so do CPU performance requirements. This 

fact is due to increased context switching. 
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The Context Switch 

Each task/process has its own context, which is the state of the CPU registers that are 

required each time it is scheduled to run. A context switch happens each time the 

scheduler switches from one process to another.   

The kernel creates and 

maintains an associated Task 

Control Block (TCB). TCBs are 

pretty much like PCBs of a 

GPOS. The context of a running 

process is highly dynamic. This 

information is stored in the 

TCB. The adjoining figure shows 

a typical context switch along 

with a small graph to show the 

same.  

As shown in the adjacent figure, 

when the kernel’s scheduler 

determines that it needs to stop 

running task 1 and start 

running task 2, it takes the 

following steps: 

 

1. The kernel saves task 1’s context information in its TCB. 

2. It loads task 2’s context information from its TCB, which becomes the current 

thread of execution. 

3. The context of task 1 is frozen while task 2 executes, but if the scheduler needs to 

run task 1 again, task 1 continues from where it left off just before the context 

switch. 

The time it takes for the scheduler to switch from one task to another is the context 

switch time. If an application’s design includes frequent context switching, however, the 

application can incur unnecessary performance overhead. 

When the scheduler determines a context switch is necessary, it relies on an associated 

module, called the dispatcher, to make that switch happen. 

A typical RTOS provides certain Task Control Functions to spawn, initialize and activate 

new tasks. They provide functions to gather information on existing tasks in the system, 

for task naming, checking of the state of a given task, setting options for task execution 
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such as the use of 

co-processor, specific 

memory models, as 

well as task deletion. 

Deletion often 

requires special 

precautions, 

especially with 

respect to 

semaphores, for 

shared memory 

tasks.  

The above diagram shows the different task states that we are already familiar with. 

The Dispatcher 

This is the part of the schedule that 

actually performs context switching 

and changes the flow of execution. At 

any time the RTOS is running, the 

flow of control is flowing through 

one of three areas, namely - 

Application Task, Interrupt Service 

Routine(ISR) or the kernel. When a 

task or ISR makes a system call, the 

flow of control passes to the kernel to 

execute one of the system routines 

provided by the kernel (need not to 

be the same as the system call).  

The dispatcher can be used on a 

call-by-call basis so that it can coordinate task-state transitions that any of the system 

calls might have caused (more than one process may have come into the Ready Queue).  

Here is where there is the catch of RTOSs. If an ISR makes system calls, the dispatcher is 

bypassed until the ISR fully completes its execution. This is equivalent to the ISR having 

high priority. This process is true even if some resources have been freed that would 

normally trigger a context switch between tasks. These context switches do not happen 

since the ISR should complete without interrupting their tasks. After the ISR completes 

its work, the kernel exits through the dispatcher so that the next correct task is 

scheduled. 
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Scheduling Algorithms 

Most kernels today support two common scheduling algorithms: 

● preemptive priority-based scheduling, and 

● round-robin scheduling. 

The RTOS manufacturer typically pre-defines these algorithms; however, in some cases, 

developers can create and define their own scheduling algorithms. Here we go through 

these algorithms in some more detail. 

Preemptive Priority-Based Scheduling 

Of the two scheduling algorithms introduced here, most real-time kernels use 

preemptive priority-based scheduling by default. The number of priority levels is usually 

256, where 0 is the highest priority and 255 is the lowest priority. If a task with a priority 

higher than that of the current task enters the “Ready” state, then the current task’s 

context is captured in the TCB and the kernel switches to the higher-priority task. 

An example can be seen here. 

 

Preemptive Priority-Based Scheduling 

Although tasks are assigned a priority when they are created, a task’s priority can be 

changed dynamically using kernel-provided calls. The ability to change task priorities 

dynamically allows an embedded application the flexibility to adjust to external events 

as they occur, creating a true real-time, responsive system. Note, however, that misuse of 

this capability can lead to priority inversions, deadlock, and eventual system failure. 
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Round-Robin Scheduling 

Pure round-robin scheduling cannot satisfy real-time system requirements because, in 

real-time systems, tasks perform work of varying degrees of importance. Instead, 

preemptive, ​priority-based scheduling can be augmented with round-robin 

scheduling​ which uses time slicing to achieve an equal allocation of the CPU for tasks of 

the same priority. 

A run-time counter tracks the time slice for each task, incrementing on every clock tick. 

When one task’s time slice completes, the counter is cleared, and the task is placed at the 

end of the cycle. Newly added tasks of the same priority are placed at the end of the 

cycle, with their run-time counters initialized to 0. 

Priority Based Round Robin Scheduling 

If a task in a round-robin cycle is preempted by a higher-priority task, its run-time count 

is saved and then restored when the interrupted task is again eligible for execution. 
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MULTITASKING MODEL FOR RTOSs 
What is discussed below is a complex model for real-time multi-tasking. The major 

features that distinguish it from the other prevalent models are what is mentioned 

below: 

1. The explicit implementation of a scheduling policy in the form of a scheduler 

module. The schedule is itself a task which executes every time an internal or 

external interrupt occurs and computes the decision on making state transitions 

for every application task in the system that has been spawned and has not yet 

been terminated. It computes this decision based on the current priority level of 

the tasks, the availability of the various resources of the system, etc. The scheduler 

also computes the current priority levels of the tasks based on various factors 

such as deadlines, computational dependencies, waiting times, etc.  

2. Based on the decisions of the scheduler, the dispatcher actually affects the state 

transition of the tasks by 

A. saving the computational state or context of the currently executing task 

from the hardware environment.  

B. enabling the next task to run by loading the process context into the 

hardware environment. It is also the responsibility of the dispatcher to 

make the short-term decisions in response to, e.g., interrupts from an 

input/output device or from the real-time clock.  

The dispatcher/scheduler has two entry conditions:  

1. The real-time clock interrupt and any interrupt which signals the completion of 

an input/output request 

2. A task suspension due to a task delaying, completing or requesting an 

input/output transfer.  

In response to the first condition, the scheduler searches for work starting with the 

highest priority task and checking each task in priority order. Thus if tasks with a high 

repetition rate are given a high priority they will be treated as if they were clock-level 

tasks, i.e., they will be run first during each system clock period.  

In response to the second condition, a search for work is started at the task with the next 

lowest priority to the task which has just been running. There cannot be another higher 

priority task ready to run since a higher priority task becoming ready always preempts a 

lower priority running task. 
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PRIORITY LEVELS IN A TYPICAL RTOS 
To ensure that response to every event is generated by executing tasks within specific 

deadlines which is crucial for an RTOS, it is essential to allocate the CPU and other 

computational resources to various tasks based on their priorities. The priority may be 

assigned statically based on some statistics or can be done dynamically, which has been 

seen to be more efficient.  

The priority is assigned based on how quickly the task will have to respond to a 

particular event - a particular task or the elapsing of a particular amount of time. Tasks 

can be broadly categorized into three broad levels of priority:  

Interrupt Level 

Tasks at this level require very fast response measured in milliseconds and occur very 

frequently. There is no schedule at this level since immediate execution follows an 

interrupt. Obviously, to meet the deadlines of the other tasks in the system, the context 

switching and processing time requirements for these tasks are to be kept at the bare 

minimum level and must be highly predictable to make the whole system behavior 

predictable. To ensure the former, often, all Interrupt Service Routines (ISR) run in 

special common and fixed contexts, such as common stacks. The latter is ensured by a 

more complex mechanism, not in current scope. The ​system clock​ and ​watchdog timers 

associated with them are tasks that execute at interrupt level.  

Hard Real-Time Level 

At this level are the tasks which are periodic, such as the sampling and control tasks, and 

tasks which require accurate timing. The scheduling of these tasks is carried out based 

on the real-time system clock (Interrupt Level Task). A virtual Software Clock is also 

maintained based on interrupts generated by the system clock. Also every few clock 

cycles a new task gets dispatched according to the scheduling policy adopted. The lowest 

priority task at this level is the base level scheduler. Thus if at a clock level interrupt, the 

clock level scheduler finds no request for higher priority clock level tasks pending, the 

base level scheduler is dispatched. 

Soft/Non-Real-Time Level  

Tasks at this level are of soft or non-real-time in that they either have no deadlines to 

meet or are allowed a wide margin of error in their timing. These are therefore taken to 

be of low priority and executed only when no request for a higher priority task (Hard 

Real-Time Level Task) is pending. Tasks at this level may be allocated priorities or may 

all run at a single priority level - that of the base level scheduler in a round robin 
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fashion. These tasks are typically initiated on demand rather than at some 

predetermined time interval. The demand may be a user input from a keypad, 

reading/writing to a file, etc. 

KEY CHARACTERISTICS OF AN RTOS 
An application’s requirements define the requirements of its underlying RTOS. Some of 

the more common attributes are: 

RELIABILITY 
Embedded systems must be reliable. Depending on the application, the system might 

need to operate for long periods without human intervention. 

Different degrees of reliability may be required. The degree of reliability that is 

acceptable will depend on the application it is used on. A common way that developers 

categorize highly reliable systems is by quantifying their uptime/downtime per year. 

The percentages under the “Number of 9s” column indicate the percent of the total time 

that a system must be available. 

 

Number of 9s  Downtime per year  Typical Application 

3 Nines (99.9%)  ~9 hours  Desktop Computer 

4 Nines (99.99%)  ~1 hour  Enterprise Server 

5 Nines (99.999%)  ~5 minutes  Carrier-Class Server 

6 Nines (99.9999%)  ~31 seconds  Carrier Switch Equipment 

Table: Categorizing highly available systems by allowable downtime 

PREDICTABILITY 
Because many embedded systems are also real-time systems, meeting time requirements 

are key to ensuring proper operation. The RTOS used in this case needs to be predictable 

to a certain degree. The term deterministic describes RTOSs with predictable behavior, in 

which the completion of operating system calls occurs within known timeframes. In a 

good deterministic RTOS, the variance of the response times for each type of system call 

is very small. 
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PERFORMANCE 
This requirement dictates that an embedded system must perform fast enough to fulfill 

its timing requirements. Typically, the more deadlines to be met—and the shorter the 

time between them—the faster the system’s CPU must be. Although underlying hardware 

can dictate a system’s processing power, its software can also contribute to system 

performance. 

One definition of throughput is the rate at which a system can generate the output based 

on the inputs coming in. Throughput also means the amount of data transferred divided 

by the time taken to transfer it. The former can be quantified by Million Instructions per 

Second (MIPS) whereas the latter can be quantified by Bits per Second (bps). 

COMPACTNESS 
Application design constraints and cost constraints help determine how compact an 

embedded system can be. For example, a cell phone clearly must be small, portable, and 

low cost. These design requirements limit system memory, which in turn limits the size 

of the application and operating system. 

In such embedded systems, where hardware real estate is limited due to size and costs, 

the RTOS clearly must be small and efficient. To meet total system requirements, 

designers must understand both the static and dynamic memory consumption of the 

RTOS and the application that will run on it. 

SCALABILITY 
Because RTOSs can be used in a wide variety of embedded systems, they must be able to 

scale up or down to meet application-specific requirements.  

If an RTOS does not scale up well, development teams might have to buy or build the 

missing pieces. Suppose that a development team wants to use an RTOS for the design of 

a cellular phone project and a base station project. If an RTOS scales well, the same RTOS 

can be used in both projects. 
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DIFFERENCE BETWEEN GPOS AND RTOS 
The basic difference of using a GPOS or an RTOS lies in the nature of the system – i.e 

whether the system is “time critical” or not. A system can be of a single purpose or 

multiple purposes. We do see many embedded systems running GPOSs on them. In some 

cases, GPOSes run on embedded devices that have ample memory and very soft real-time 

requirements. GPOSes typically require a lot more memory, however, and are not well 

suited to real-time embedded devices with limited memory and high-performance 

requirements. 

Example of a “time-critical system” is an Automated Teller Machines (ATM). Here an 

ATM card user is supposed to get his money from the teller machine within 4 or 5 

seconds from the moment he presses the confirmation button. The card user will not 

wait 5 minutes at the ATM after he pressed the confirm button. So an ATM is a time 

critical system. Whereas a personal computer (PC) is not a time-critical system. The 

purpose of a PC is multiple. A user can run many applications at the same time. After 

pressing the SAVE button of a finished document, there is no particular time limit that 

the doc should be saved within 5 seconds. It may take several minutes (in some cases) 

depending upon the number of tasks and processes running in parallel. 

A GPOS is used for systems/applications that are not time critical.  Example:- Windows, 

Linux, Unix, etc. 

An RTOS is used for time-critical systems. Example:- VxWorks, uCos, etc. 

TASK SCHEDULING 
In the case of a GPOS – task scheduling is not based on  “priority” always. GPOS is 

programmed to handle scheduling in such a way that it manages to achieve high 

throughput. Here throughput means the total number of processes that complete their 

execution per unit time. In such a case, sometimes the execution of a high priority 

process will get delayed in order to serve 5 or 6 low priority tasks. High throughput is 

achieved by serving 5 low priority tasks than by serving a single high priority one. 

Where in case of an RTOS, scheduling is always priority based. Most RTOS uses 

preemptive task scheduling method which is based on priority levels. Here a high 

priority process gets executed over the low priority ones. All “low priority process 

execution” will get paused. A high priority process execution will get override only if a 

request comes from an even high priority process. 
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HARDWARE AND ECONOMIC FACTORS 
An RTOS is usually designed for a low end, a stand-alone device like an ATM, Vending 

machine, Kiosk, etc. RTOS is lightweight and small in size compared to a GPOS. A GPOS is 

made for a high end, general purpose system like a personal computer, a work station, a 

server system, etc. The basic difference between a low-end system and high-end system 

is in its hardware configuration. Nowadays a personal computer or even a smartphone 

comes with high-speed processors (in the range of many Gigahertz), large RAM’s (in the 

range 2 or 3 GB’s and even higher), etc. But an embedded system works on low hardware 

configurations usually in the speed in the range of  Megahertz and RAM in the range of 

Megabytes. A GPOS being too heavy demands very high-end hardware configurations. It 

is economical to port an RTOS to an embedded system of limited expectations and 

functionalities (Example: An ATM is supposed to do only certain functions like Money 

transfer, Withdrawal, Balance check, etc). So it is more logical to use an RTOS inside the 

ATM with its limited hardware. It is not economical to improve the hardware of an ATM 

just to port a GPOS as it’s the user interface. 

LATENCY ISSUES 
Another major issue with a GPOS is unbounded dispatch latency, which most GPOS falls 

into. The number of threads to schedule, latencies will get added up. An RTOS has no 

such issues because all the process and threads in it have got bounded latencies which 

means that a process/thread will get executed within a specified time limit. 

PREEMPTIBLE KERNEL 
The kernel of an RTOS is preemptible whereas a GPOS kernel is not preemptible. This is a 

major issue when it comes to serving a high priority process/threads first. If the kernel is 

not preemptible, then a request/call from kernel will override all other process and 

threads. For example:- a request from a driver or some other system service comes in, it 

is treated as a kernel call which will be served immediately overriding all other process 

and threads. In an RTOS the kernel is kept very simple and only very important service 

requests are kept within the kernel call. All other service requests are treated as external 

processes and threads. All such service requests from the kernel are associated with a 

bounded latency in an RTOS. This ensures a highly predictable and quick response from 

an RTOS. 
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TAKEAWAY POINTS 
➔ RTOSs are best suited for real-time, application-specific embedded systems; GPOSs 

are typically used for general-purpose systems. 

➔ RTOSs are programs that schedule execution in a timely manner, manage system 

resources, and provide a consistent foundation for developing application code. 

➔ Kernels are the core module of every RTOS and typically contain kernel objects, 

services, and scheduler. 

➔ Kernels can deploy different algorithms for task scheduling. The most common 

two algorithms are preemptive priority-based scheduling and round-robin 

scheduling. 

➔ RTOSes for real-time embedded systems should be reliable, predictable, high 

performance, compact, and scalable. 
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